Instructions:

Write the answers and show all your work in the blue books. There are 4 problems. Make sure you do all 4. No books, notes, or collaboration with others.

Problem 1. (20 points) A function \(f \) is twice differentiable and satisfies the following:

(i) \(f'' > 0 \) on \((-\infty, -1) \); \(f'' < 0 \) on \((-1,3)\) and \((3, \infty)\).

(ii) \(x = 2 \) and \(3 \) are critical points.

(iii) \(f' > 0 \) on \((-\infty, -1)\), \((-1,2)\), and \((3, \infty)\); \(f' < 0 \) on \((2,3)\).

(iv) \(\lim_{x \to -1^+} f(x) = -\infty \) and \(\lim_{x \to -1^-} f(x) = +\infty \).

(v) \(f(0) = 0, f(2) = 1, f(3) = 0 \). Also, \(\lim_{x \to \pm \infty} f(x) = 1 \).

From this information, answer the following questions. Show your reasoning in each case:

(a) Determine all local maxima and minima.

(b) Determine all asymptotes, both horizontal and vertical.

(c) Sketch the graph of \(f \).

Problem 2. (8 points) Find the maximum and minimum values of

\[
f(\theta) = \cos(\theta) + \sqrt{3}\sin(\theta)\]

on the interval \([0, \pi]\).

Problem 3. (6 points) A jubjub tree produces one fruit each growing season for each foot of height. Fruit sell for \$10 apiece. However, due to the shadow it casts, a jubjub tree \(x \) feet tall uses up \(5x^2 \) square feet of orchard space. Assuming rental of orchard space for the growing season is 2 cents per square foot, how tall should you grow your jubjub trees to maximize profits?

Problem 4. (4 points) Assume the function \(f \) is differentiable and \(f'(x) \geq -1 \) for every \(x \). Prove that the inequality

\[
f(x) + x \leq f(y) + y
\]

holds whenever \(x < y \). (Hint: rearrange the inequality and use the Mean Value Theorem.)