Instructions: Write the solutions and show all your work in the bluebook. There are 5 questions. Make sure you work all 5. Each problem carries equal weight.

1. Let A be a nonempty set. Consider the relation, D, called the diagonal relation, defined by

 $$D = \{(x, x) : x \in A\}.$$

 a. Prove that D is an equivalence relation on A.

 b. Describe the resulting partition of A into disjoint equivalence classes.

2. Let $f(x) = \frac{1}{x+3}$.

 a. What is the (implied) domain of f?

 b. What is the range of f?

 c. Show that f is a bijection of the set in part (a) onto the set in part (b).

 d. Find a formula for the inverse function.

3. Let A be the set of real-valued functions having domain $[0,1]$. Define a relation \leq on A by

 $$f \leq g \iff f(x) \leq g(x), \ 0 \leq x \leq 1.$$

 a. Prove that \leq is a partial order on A.

 b. Show that \leq is not a linear order by exhibiting a pair f and g that are not comparable.

4. Let $f : A \longrightarrow B$ and $g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Prove that f must be injective. Must g be injective?

5. For images of sets we know that, in general, $f(C \cap D) \subseteq f(C) \cap f(D)$, but that equality sometimes does not hold. Prove that equality does hold if f is injective.